We aim to create an exceptional school that harbours confidence, respect and a love of learning and prepares children for the challenges and adventures of life.

Whole School Calculation Policy - October 2018

Objective	Concrete	Pictorial	Abstract
Number bonds of $5,6,7,8,9$ and 10 Combining two parts to make a whole: partwhole model	Use cubes, numicon and others to add two numbers together. Use numicon and cubes to show number bonds.		$\begin{aligned} & 2+3=5 \\ & 3+2=5 \\ & 5=3+2 \\ & 5=2+3 \end{aligned}$ Use the part- whole model to move into the abstract.
Counting Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$5+3=8$ Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$5+3=8$ Place the larger number in your head and count on the smaller number to
Re-grouping to make 10.	 Start with the biggest number and use the smaller number to make 10. $6+5=11$ Use numicon to help with making those links to 10.	Use pictures or a number line to regroup or partition the smaller number to make 10. $9+5=14$ $\begin{aligned} & 6+4=10 \\ & 10+1=11 \end{aligned}$	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?

Objective	Concrete	Pictorial	Abstract
Column method-re-grouping	Make both numbers in base 10 using a place value grid. Complete adding of the ones and tens as usual and calculate the totals. Then use base 10 to form the two new numbers that have been created. Add them together to get the final total. When the children are confident with place value - use place value counters. Make both numbers on a place value grid. Add up the ones and exchange 10 ones for one 10. Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added. As children move on to decimals, money and decimal place value counters can be used to support learning.	Children can draw a pictorial representation of the columns, base 10 and place value counters to further support their learning and understanding. Stem sentences First I partition the number into tens and ones. Next I add the ones together to get \qquad 12 . \qquad Because I have too many ones, Then I add the tens together to make _ 80 __. Finally I add the _80_ and _2_ to make _ 82_.	$\begin{aligned} & 40+9 \\ & \frac{20+3}{60+12}=72 \end{aligned}$ $\begin{aligned} & 100+40+6 \\ & \frac{500+20+7}{600+70+3}=673 \end{aligned}$ As the children progress, they will move from the expanded to the compacted method. $\begin{array}{r} 146 \\ +527 \\ \hline 1 \\ \hline 673 \end{array}$ As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here.

Objective	Concrete	Pictorial	Abstract	
Taking away ones	Use physical objects, counters, cubes etc. to show how objects can be taken away. $6-4=$	Objects can be drawn and then crossed out to show what has been taken away. Children could draw tens and ones and cross out. $29-7$ $\\| \frac{\text { 考 }}{\text { 充 }}=22$	$\begin{aligned} & 4-2=2 \\ & 15-3=12 \end{aligned}$	
Counting backwards	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. $13-4=9$ Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track. Start at the bigger number and count back the smaller number, showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.	
Using number bonds Part-whole model	Link to addition-use the part whole model to explain the inverse. If 10 is the whole and 6 is one of the parts-what is the missing part? Numicon to reinforce number bond knowledge.	Use a pictorial representation of objects to show the part part whole model. 8 goldfish Use bar models to show the link between addition and subtraction.	Move to using numbers within the part whole model.	

Objective	Concrete	Pictorial	Abstract
Make ten	$14-9=$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9 .	Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$17-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off?
Counting on - finding the difference.	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference. Use basic bar models with items to find the difference.		Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
Column method without regrouping	Use base 10 to make the two numbers like addition. Use the equipment to model how to subtract and write the numbers at the bottom.	The children can draw sticks and stones to represent the two digit numbers. Lay it out in the same way as the base ten and then physically cross out the amount, then count the remainder to find the answer.	Children partition the number and then layout them out in a column.

Objective	Concrete	Pictorial	Abstract
Column method without regrouping continued.	When children are secure with place value, they could use the place value counters in the same method.	When the children are secure with place value they could draw their place value counters	When children are secure they can move to more formal Column subtraction. $\begin{array}{r} 78 \\ -\quad 43 \\ \hline 35 \end{array}$
Column method with regrouping.	Use base 10, lay out in the same way to establish the column method. Children exchange one ten and replace with ten ones. Begin with one exchange and then move to two.	When children are secure, they can draw the sticks and stones and exchange by crossing out the ten and adding ten ones.	Children can start their formal written method by partitioning the number into clear place value columns.
Column method with regrouping - Continued.	When children are secure with place value, they can use the place value counters with the same method.	When they are confident with the equipment, the children can draw the place value counters and exchange by crossing out the counters. Stem sentences First I partition the numbers into tens and ones. Next I subtract the ones. Because I do not have enough ones, I exchange 1 ten for ten ones. Now I subtract _5_ ones from _12_ ones to make _7_ ones. Then I subtract _2_ tens from the _5_ tens to make _3_ tens.	Children move onto a more compact method when they are secure. $\begin{array}{r} 34^{3} 12 \\ -\quad 128 \\ \hline 214 \end{array}$ This will lead to an understanding of subtracting any number including decimals.

Onjective Concrete

Objective	Concrete	Pictorial	Abstract
Column multiplication. Expanded method	Show the link with arrays to first introduce the expanded method.	Once children are secure with the concept, the children can move onto pictorial representation. Stem sentences. First I partition the numbers into tens and ones. Next I multiply each section together. Finally I add the totals together to get	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. $\begin{aligned} & 18 \\ & \times \frac{13}{24}(3 \times 8) \\ & 30(3 \times 10)) \\ & 80(10 \times 8) \\ & \frac{100}{234}(10 \times 10) \end{aligned}$
Compact method.	Children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer. $\begin{aligned} & 32 \\ & \times \quad 24 \\ & \hline 8(4 \times 2) \\ & 120(4 \times 30) \\ & 40(20 \times 2) \\ & \frac{600}{768}(20 \times 30) \end{aligned}$ This moves to the more compact method.

Objective	Concrete	Pictorial	Abstract
Sharing	I have 10 cubes, can you share them equally between two people?	Children use pictures or shapes to share quantities.	Share 8 buns between two people. $10 \div 2=5$
Grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 10 \div 5=? \\ & 5 \times ?=10 \end{aligned}$	$10 \div 5=2$ Divide 10 into 5 groups. How many are in each group?
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{r} \text { Eg } 15 \div 3=5 \\ 5 \times 3=15 \\ 15 \div 5=3 \end{array}$ $3 \times 5=15$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 5 \times 3=15 \\ & 3 \times 5=15 \\ & 15 \div 5=3 \\ & 15 \div 3=5 \end{aligned}$

